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Problem (Exercise 6.1).

Proof. (i) We have
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Since fot |Bs|1/ %dB, is a martingale, by property of martingale, we know it must has zero expectation,

that is
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By Ito’s Isometry, we have
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(ii) Similarly, we have




then Ito’s Isometry implies that
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as desired.

Problem (Exercise 8.2).
Proof. Define the function f € C1?(RT,R)

Note that
of of ., ’f
By Ito’s formula, we get
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which proves the claim.

Problem (Exercise 8.4).

Proof. (a) Assume the form f(¢,x) = ¢(t)(x). First, we separate the variables, consider

1 1 ,
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Rearrange the term and denote the separation constant as — K, we get
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so that
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There are three cases depending on the value of K, consider:
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(i) If K =0, we get

P’ (x) =0 = ¥(z) =a+bx (25)
¢(t)=0 = ¢(t)=c (26)
for some constant a,b,c € R and
Mt = C((l + bBt) (27)
(ii) If K > 0, then we get
Y(x) = acos(\&x) + bsin(xf)\x) o(t) = cexp(iAt) (28)
for some constant a, b, ¢, then
. k
M, =c (a cos(\[\Bt) + bsm(\F)\Bt)> exp(2)\t> (29)
(iii) If K <0, then we get
. k
P(x) = acosh(V—Aw) + bsmh(v —AJ:) o(t) = cexp(2)\t> (30)
for some constant a, b, ¢, so that
k
M, = ¢ (a cosh(\/—/\Bt) n bsinh(\/—ABt)) exp<2/\t) (31)

which completes the proof.

(b) Apply Taylor’s theorem up to 3rd order at zero, we get

Mtzl—l—Bt-a—l—%(Bf—t)-a2+%(Bf—3tBt)~a3+--- (32)

It follows that the first four of H(t, z) are

Holt,e)=1 Hi(t,x)=c Ha(t,x) =+ (e —1) Hy(t,x) = é («*  3tx) (33)
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Lastly, fix k € ZT, we show M;(k) = H(t, B;) is a martingale. We exploit the fact that M; is a
martingale. For s < ¢, we have

M,=E[M, | F,] = ZakasB [Za Hy(t,By) | F, (34)
k=0 k=0
=3 A EIHM(:, B) | F (35)
It follows that
E [Hy(t, By) | Fs| = Hy(s, B) (36)
which proves the claim, as desired.
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Problem (Exercise 8.5).
Proof. (a) First, we show f is Laplacian for (x,y, z) # 0. Consider
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Note that the above numerators sum up to zero, so that we have Af = 0 and f is harmonic.

Proposition 8.3, we immediately have M; to be a local martingale.
(b) Denote
B, = (B},B?,B}) e R®
where Bf ~ N(0,t) for each i € {1,2,3}. Observe
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then with spherical coordinates, we get
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which proves the claim.

(c) For the sake of contradiction, suppose that M; is a martingale, then given s < ¢, we have
E [Mt | ]:s'] = Ms
Consider the convex function ¢(z) = 22, then Jensen’s inequality implies that

E[M? | F,] > (B[M, | FJ])* = M]

(38)

By



Take expectation of both sides, part (b) implies that

EM? > EM? = % > % (50)
However, since we set s < ¢, the above is absurd, contradiction.
O
Problem (Exercise 8.3).
Proof. (a) By Cauchy-Riemann equation, we have
Uy —Vy =0 = Upy — Vyp =0 (51)
Uy + Uy =0 = Uyy + Vgy =0 (52)
Sum up the two equations, we get
AU = Uyy + Uyy =0 (53)
so that v is harmonic. Similarly, we have
Up — Uy =0 == Upy — Vyy =0 (54)
Uy + Uy =0 = Uyg + Vg =0 (55)
so that minus the two yields
AV =gy +Uyy =0 (56)
and v is harmonic. Now, we decompose the two analytic functions by Euler’s formula
(i) Since exp(z) = €% = e? (cosy + isiny), then we obtain
Re(exp(z)) = e cosy Im(exp(z)) = e“siny (57)
(ii) Note that
zexp(z) = (x +iy)e” (cosy + isiny) (58)
= ze” cosy + ize” siny + iye” cosy — ye” siny (59)
then we get
Re(zexp(z)) = €” (zcosy —ysiny) Im(zexp(z)) =e” (xsiny + ycosy) (60)
as desired.

First, we decompose the analytic function f(z) = z2. Consider
f(2) = (z +iy)? = (2® — y?) +i(2zy) (61)

then it follows that Re(f) = u(x,y) = 2? — 3? is harmonic from part (a). Consequently, we have
X = u(ét) as a local martingale with Xy = 4. Define the stopping times

7 =inf{t: Xy =1} 75 =inf{t: X; =5} (62)
and 7 = 1 A 75. Alternatively, we may express T as
T=inf{t: Xy — Xo=1o0r X; — Xo = -3} (63)

Now, we apply Proposition 7.8 on X; — Xg to compute P(5 oy (X, = 1), but we need to justify why we
may apply it. Since B, € R% is recurrent, then we know 7 < oo almost surely. Then, Proposition 7.8 is
justified and

Pooy (Xr=1)=Pup (X —Xo=-3)=1—- —— =~ (64)

as desired.
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