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Problem 4.1.7.
Proof. First, observe that

VarX = EX? — (EX)? (1)
—E[E[X*| F]] - (E[E[X | F])* (2)

Note that we may further manipulate the above term using assumption, that is

E[E[X?| F]] = E [Var[X | F] + (E[xX | F))?] (3)
—E[Var[X | FI]+ E[(E[X | F])?] (4)
then we have
VarX =E [Var [X | F]| + E [E[X | F))’| - E[E[X | F]))? (5)
—EVar[X | 7]l + (E [E[X | 7))’] - E[E[X | F]))?) (6)
= E[Var [X | ]| + Var [E[X | 7] (7)
as desired. O

Problem 4.1.8.

Proof. For the set up, we define F = o(N), then consider the following identity from the definition of
conditional expectation

VarX = EX? — (EX)? (8)
—E[E[X*| F]] - E[E[X | F])* (9)

Now, we compute E [X | F] and E [X? | F|. Denote the event N = n as ,,, where n € ZT, then |J,,cz+ Q0 =
Q, and ,,’s are disjoint. Observe that

/ XdIP’:/ (Vi + -+ Y,) dP (10)
Qn Qn
=nE[v;]E[1q,] (11)
=nuP [N = n) (12)
= N pdP (13)



holds for all Q,, € F, then we have E [X | F] = Ny. Similarly, consider

/ XQd]P’:/ (Y14 +Y,)" dP (14)
Qp Qn
—E|(Yi 4+ )" 1q,
- [(Yl o +Yn)2] ‘E[lq,]

(15)

(16)

= (Var[Yi + - + Vo] + E(Yi + - + Y,)?) - E[1q, ] (17)
= (no? +n?u?) - P[N = n] (18)
(19)

:/Q (No? + N?u?) dP

so that E [X2 | f] = No? + N?u2. Lastly, using equation @ we get

VarX = E[E[X? | F]] - (E[E[X | F]])? (20)

=E[No? + N2u?] — (E[Np))® (21)

= 0?EN + p*EN? — 2(EN)? (22)

= 0?EN + 2 - (EN? — (EN)?) (23)

= o?EN + p*VarN (24)

as desired. u

Problem 4.2.9.

Proof. Since the other two conditions are satisfied by construction of Z,, and Y, and the fact that X!, X2
are supermartingales., it suffices to show i) E [V, 41 | F,,] <Y, and ii) E[Z,41 | F] < Z,. Consider:

i) Observe that

Xy > X3 = Xy-X3>0 (25)
Consider
Yog1 = Xp 1 Insnt1 + X2 In<nt (26)
= 1’1L+11N>n - Xi+11N:n+1 + X72L+11N:n+1 + X72L+11N§n (27)
= Xpp1lnsn + X5 Inan — (XppIv=nst — Xoy In=nt1) (28)
< X711+11N>n + X721+1 In<n (29)

Take conditional expectation of both sides and use the fact that X!, X2 are supermartingales, we get

E [Yn+1 | «Fn] <E [X711+11N>n + XZ+11NSH ‘ ]:n] (30)
=E [Xrlwrl | ]'—n] Insn +E [X1%+1 | fn] In<n (31)
< X nsn+ X2y, =Y, (32)

ii) Similarly, we have

Zn1 = Xp 1 Inznet + X Ineng (33)
= (Xpp1lnsnst + Xo o Ingns) + (X Inv=nit — XpsiIn=nt1) (34)
=Y + (X Iv=nt1 — XopIn=nt1) (35)
=X} 11nsn+ X2 1 1n<, by applying equation 28 on Y41 (36)



Take conditional expectation of both side, we get
E[Zn1 | Ful < Xplnon + X21nen =Yy (37)
Lastly, observe that
Zp =Yy =X non — X21n—p >0 (38)
It immediately follows from equation [37] that

as desired. O
Problem 4.2.10.

Proof. (i) We use switching principle to prove the first assertion. For the base step, when j = 1, we have

Zy =Yoan, = Yaloen, + YN Lusw, (40)
= 1y 2 Tz (a)
Note that at Ny, from the assumption, for all m > Ng = —1, we have
Ny

Xy, <a = <1 (42)

a

Thus, we may conclude from switching principle that Z} is a supermartingale.

Before the induction step, we shall make some observation for Z2, Z3. Consider
Z2 =Yorn, = Yaloen, + Y, lusn,
= (Yoloen, +Yolosn,) nen, + g “1p>nN,
=1 1nen, + (Xn/a)la>n,) Inen, + (b/a) 1>,
= Zplnen, + (b/a)lsn,
Note that at Ny, for all m > Ny, we have

Xy, _ b

Xy 2b = —=>- = Zy, > (b/a) (47)

so that we may apply switching principle to conclude that Z2 is a supermartingale. For Z2, we have
Z3 =Yurny = Yolpen, + Y losn,

(48)

= (Ynlpen, + Yalp>n,) Lnan, + (0/a) (XN, /@) 1> N, (49)
= [(1-1nen, + (Xn/a)lnzn,) Inen, + (b/@) 1>, Lnen, + (b/a) (XN, /a)1n>n,  (50)
(51)

(52)

ot
—

= [ZrlLln<N2 + (b/a)]-nZNg] 1n<N3 + (b/a)(XNg/a)1n2N3
= Zilnen, + (b/a)(Xn,/a)1n> N,

Note that at Nz, for all m > N5, we have

Xy, <a = (b/a)(Xn,/a) < (b/a) = Z}, = (b/a)(Xn,/a) (53)
so that switching principle implies Z? is a supermartingale. Recursively apply the above, for k > 1, we
have

73 = Z3 ey, + (0/a)* - Las g, (54)
Z = 7251, cnpy + (0/0) (X Ngesr /@) 1> N (55)



For the induction step, assume Zi,’;l > (b/a)* so that Z2* is a supermartingale by switching principle.
Consider

Z?Lk-i_l = Z3k1n<N2k+1 + (b/a)k(XN2k+1 /a’)anNzk-H (56)
= (Zik_11n<N2k + (b/a)k . 1nZN2k) 1TL<N2k+1 + (b/a)k(XN2k+1/a)1n2N2k+1 (57)

At Nogo1, for all m > Noy, combined with assumption from induction, we have

XN2k+1 <a = (b/a)k (XN2k+1/a') < (b/a')k (58)
= (Z?V];;jl 1n<N2k + (b/a)k . 1TLZN21C) > (b/a’>k(XN2k+1/a’) (59)

so that the switching principle implies Z2**1 is a supermartingale. Apply the process recursively, we
can deduce that Z2%*+2 is also a supermartingale by the switching principle, as desired.

By part (i), we know that ZJ is supermartingale, so that
EZ2k = EY,an,, < EY) (60)
Observe that when 0 < n < Nj, we have Yy = 1. If N; = 0, then we must have Xy < a. It follows that
Yy = min(Xp/a,1) = EYy = Emin(Xo/a, 1) (61)
Consider

lim EYpan,, = lim EYyan,, 62
n— oo

n—oo (
= lim E[Y,an,, 1<k + Yaany, 1okl (63

n— o0
= lim E[(Yolncng, + YNy 1n> Ny, ) o<kl (64
(

n—oo

)
)
)
)

+ lim E [(Yn1n<N2k + YN2k 1712N2k> 1U2k] 65

n— o0

Note that Y;, is positive, then from equation [64] we get

Jim B (Ynln<ng, + YNo ln>ny,) lu<k] = E L}l_{go Yn1U<k} (66)
—E [nlg% Yn} PU < k] >0 (67)
and from equation
Jim B[(Yalnan,, + Yo InzNoy) ozk] = B[N, 1uz4] (68)
= (b/a)’P[U > k] (69)
Assemble the above result, we get
lim BV, nx,, = (b/afP[U > K +E [nli_)rrgo Yn} P[U < k] < Emin(Xo/a, 1) (70)
which implies that
(b/a)’P[U > k] < Emin(Xy/a, 1) (71)

as desired.



Problem 4.2.4.
Proof. For the set up, define the stopping time
N, = inf{k : X}, > m} (72)

for each m > 0. By Theorem 4.2.9, we know that Xn, an is a sub-martingale.
Now, we wish to show Xx, an converges a.s. using Theorem 4.2.11. Note that

Sup X3, an < X, = (En, + Xnm1) (73)
S gEi\im + Xj\}'m_l (74)
< sup f}i}m +m (75)
It follows that
supIEXJJ{,mAn < Esup X;{,m/\n <E (supfj\r,m) +m < o0 (76)

then we immediately have X, an converges a.s.. In particular, Xy _ . converges on the event w,, = {N,, =
oo}, ie., XN, anlnN,, —co = Xp converges. Since we have sup X,, < oo, then it must be the case that

G W = Q (77)

Thus, X,, converges a.s., as desired.

Problem 4.2.6 (i).

Proof. Note that X,, is a non-negative martingale, in particular, by construction it is a super-martingale.
Thus, we may apply Theorem 4.2.12 and conclude that there exists some random variable X with

X, = X as. and EX <EX, (78)
Choose ¢ > 0 such that
P(Y1—-1/>6)>0 (79)
then for all € > 0, we have
P(| X1 — Xn| > €0) =P (X, |YVot1 — 1] > €d) (80)
> P (X > P ([Yaps — 1] > ) (81)

Take limit of both sides, then note LHS tends to zero as n — co. Since equation [79]is positive, then it must
be the case that

P(X,>€e) —0 (82)
for all € > 0, which implies that X = 0 a.s., as desired. O]
Problem 4.3.11.
Proof. If p <1, then we have
limZ,/p" =0 = P(limZ,/p" =0)=1 (83)

Thus, it must be the case that p > 1.



Since p > 1 and Zy = 1, then by Theorem 4.3.12; we have
p =P (Z, =0 for some n)
to be the only solution of ¢(p) = p € [0,1). Denote

6 :=P(lim Z,/u" =0)
S i= P (Zyn /™ = 0)

and note that J,, — §. We claim é = p by showing ¢§ also is the solution to ¢. Consider

(P((Sm) = Zpk (6m)k

k>0

= Z P (Zp/u™ = O))k P(Z1 = k)
k>0

=S (™ =01 2= W) B(Z = B
k>0

=P (Zpsr /0" =0) = i1
Take limit of both sides, note that ¢ is continuous by construction, we get
p0)=0 = d=p = P(IimZ,/u"=0)=0p
Furthermore, by the assumption that § < 1, we have
1-6=1-p
so that
P(lim Z,, /u™ > 0) =P (Z, > 0 for some n)

as desired.

Problem 4.3.12.
Proof. First, we show p%» is a martingale. It suffices to show that
B (7 | o) = o
Observe that
E (o4 | Fo) =E (p%+ | Z,) =E (p R e A | Zn)

then on the event that {Z, = k}, we have

£ (p P Zn) 1z,-k=E (P ?+1+N+§£+1>
k
= (Ep ?“)
0o k
= (Zpipl> =o(p)* = p*
1=0

(91)

(92)

(96)

(97)

(98)

Note that the above holds for all {Z, = k}, so that we have E (p?»+1 | F,,) = p#», which implies p? is a

martingale.



For the second part, on the event {Zy = x}, by the property of martingale, we have
E (p?" | Zo =) = p" (99)

Furthermore, since lim Z,, is either zero or infinity, i.e.,
PlimZ, =0)+P(limZ, =) =1 (100)
and p <1 = p> =0, then
p* = lim IE(pZ"|Z(J:x):E<1im pZ"|Z0:a:) by BCT (101)

n—r oo n—oo

=" P(limZ,=0|Zy=2)+p= -P(limZ, =0 | Zy = ) (102)
=P(limZ, =0|2Zy=x) (103)
=P (Z,=0for somen>1|Zy=uzx) (104)

as desired. O
Problem 4.4.2.

Proof. Suppose X,, is a sub-martingale and M < N with P(N < k) = 1. If M = N, then we are done.
Assume M < N, then we may define a predictable

Kn =1ymcn<n (105)
It follows that
(K- X), = XN — XMan (106)
is a sub-martingale. Thus, we have
E(K-X),<E(K-X), = 0<EXnar —EXyar = EXy <EXy (107)
O

Problem 4.4.3.
Proof. We first show A € Fp. For fixed n € N, observe that

{(N<n}nA={M <N<n}nA (108)
={N<n}n({M <n}nA) (109)

Since M is a stopping time, then by definition
{M<n}nAeF, (110)
Combined with the fact IV is a stopping time, we know
{N<n}nAeF, = AcFy (111)
and A¢ € Fy. By the above result, we have

(M<nlnAecF,

{NSn}ﬂACEfn} = {L<n}€F, (112)

which proves the assertion. O



Problem 4.4.4.

Proof. Assume the same setting as above. Note that L < N. By exercise 4.4.2, we have

EX; <EXn (113)
Breaking the LHS into two parts, we have
EX;, =EXp14+EXp14e =EXpy1a+EXN1ge (114)
then
EXn(1a+1ac) >EXpyls+EXN]AC (115)
= EXn14a >EXjy14 (116)

Since the choice of A € F); is arbitrary and Xj; € Fjy, then we get

E[XN [ Fu] =2 E[Xy | Fu] = Xy (117)
as desired. O
Problem 4.4.10.

Proof. We use LP convergence theorem to prove the assertion. It suffices to argue

E|X,|* = EX? < o0 (118)
Consider
EX2=E(Xo+& +---&)° (119)
n 2
s ge) o
k=1
n n 2
=E[X5+2X0> &+ (Z gk> (121)
k=1 k=1
n n 2
=EX; +2EXo Y & +E (Z gk> (122)
k=1 k=1
=EX5+2EX0 Y G+E () &G+2 > & (123)
k=1 k=1 j<k<n
=EX+EY &+ |2) EXo&+2 ) EgG (124)
k=1 k=1 j<k<n

By orthogonality of martingale increments, the term in parentheses equal zero, so

EX2 =EX§+E) & < oo (125)
k=1

as desired. 0



Problem 4.6.2.
Proof. We show X,, on I}, ,, defines a martingale. Fix I, ,, € F,, arbitrary, observe that if
EXH-HlIk,n = Eanlk,n (126)

then we must have

Xpp1 = X, (127)

Ik,n Ik:,'n.

Since our choice of Iy, is arbitrary and any event in F,, are of the form Iy ,, then it follows from the
definition of conditional expectation that

E[Xp1 | Fol =E[Xn | Ful = X, (128)

Thus, for the first claim, it suffices to show equation Note that by construction, {X,}’s are constant
given k,n, then

FUSH) —f(3m) 1

Eanlk,n = X,P (Ik,n) = T : on (129)
277.
E+1 k
— _ - 130
/(%) (=) 130
For the other side, observe the following trickery
k 2k
o5 = T (131)
k+1 2k42
TR T (132)
then
IEX”L“Fl]‘Ik,n = EX”+1112km,+1 + EXH+1112k+1,n+1 (133)

k k
() ()

which proves that X, is a martingale on Iy, .

Since we have shown X, is a martingale, then to show convergence in L' and a.s., it suffices to show X,
is uniformly integrable by Theorem 4.6.7.

First, we exploit Lipschitz continutiy to get

‘f(’“;l)f(z’i)

1X,| = - <K (135)

on

for all n € N. Tt follows that for sufficiently large M with M > K, {|X;| > M} is a measure zero set.
Consequently, we have

lim (supE(|Xi|; | X5| > M)) =0 (136)

0 \ el

It immediately follows that X,, converges a.s. and in L! to X.
Lastly, we prove the result regarding integrals. Since we have a.s. convergence and |X,| < K and
Fn T Fxo, then we may apply DCT for conditional expectations and get

E[X, | Fn] = E[ X | Fool (137)



Since the above as random varible are also bounded by the fact that Lipschitz bound (equation [135]) holds
for all n € N, then BCT is justified. Combined with the definition of conditional expectation, we get

Xn:/ EX, | Fol = [ EXw|Ful= [ Xu (138)
I ,n Ig,n

I ,n Ikn

for fixed Ij . Denote ay, by as the end point of Ij ,,, then

k+1 k
) — flgw) 1
/ X, = Xn/llk,n = M C (139)
Ik,'n. on 2
= f(bk) — flax) (140)
b
= Xoo (141)
ag
Since f is continuous, for any a,b, we may send ar — a, by — b, which completes the proof. O
Problem 4.6.3.
Proof. Note that F,, T F, then by Theorem 4.6.8, we have that
E[f | Fu] = E[f | Fxl (142)
almost surely and in L'. Since f € F,,, then we have
Elf | Fa] = E[f | Fso]l = f (143)
in L. O
Problem 4.6.4.
Proof. First, we make some observations. Note that
P ({ lim X, =oco}°U{ lim X, = oo}) =1 (144)
n— oo n—oo
Thus, to prove the claim, it suffices to show
{lim X, =c0}°CD (145)
n—oo
For the set up, denote
Fn=0 (X1, ,Xn) and Fo = 0 (U° X,,) (146)

By construction, we have F,, T F and D € F,, then Levy 0-1 law implies that
E(lp | F.)=P(D|F,) = 1p as. (147)

Consequently, for fixed positive x, take w € {X,, < x i.0.}. Note that if X,, < x infinitely often, then
there must exists some further sequences of index {n;} beyond a threshold that ensures X,; < x for all n;.
It follows that

1p(w) = lim P(D | F,) = lim IP(D | Fnj) >6(x) >0 (148)
n—oo ]—)OO
which implies that
1pw)=1 = weD = {X,<zio}CD (149)

10



Since the above inclusion holds for every x € N, then we must have

U{xn<zio}cD (150)
x€eN
Lastly, we claim that
UJ{Xn <2io} ={lim X, =00} (151)
n—oo

zeN

Note that for any x, X,, < x infinitely often implies that after a certain threshold, X, # oo, so that

U {X, <zio}C{lim X, =0} (152)
n— 00
zeN

If lim,, oo X, = o0 is not true, then for index n after any threshold, X, # co. Which implies that for all
threshold, X, is bounded infinitely often. Thus, we have

{lim X, =oc}*C | J{X, <zio} (153)

n—oo
zeN
which proves the claim. O
Problem 4.6.5.

Proof. Assume py =P (£ = 0) > 0. Denote

D={lim Z, =0} (154)
n—oo
and F,, =0 (21, ,2Z,) in which F,, T F. Before using 4.6.4, we need to justify its assumption.

We need to find such §(z) > 0. Fix positive z. Observe that for the event {Z,, < x}, there are two cases:
(i) Zn # 0 and (ii) Z,, = 0. Consider

1. In this case, on the event {0 < Z,, <z}, we have

P(D | F,) > pi" >p5 >0 (155)

2. If Z,, =0, then we trivially have that

P(D|F,)=1>p}>0 (156)
Thus, we may conclude on {X,, < z}
P(D|F,) >d(x):=p5>0 (157)
so that from 4.6.4
P (D U{ lim Z, = oo}) =P ({nlggo Zy =0} U{ lim Z, = oo}) (158)
=P (Jﬂ) Zn =0 or oo) =1 (159)
as desired. O

11



Problem 4.8.3.

Proof. Note that if ET" = oo, then problem is trivial. For the same reason, we assume that 7" < oo and
ET < oco. For the set up, we denote

X, = S2 —no? (160)

Now, we justify why we may use Theorem 4.8.2. Consider

E|X7| =E|S7 — To?| (161)
< E|S%| (162)
=E[Sr-1+¢° (163)
<E(a+¢)’ (164)
= Var(a + &) + (E(a + £))* (165)
<o’ +a® <o (166)
Then, we show X, 17, is uniformly integrable. Observe that
| Xn1rsn| = |(S,2L — nag) 1T>n| < a? (167)
Clearly, for all € > 0, the set
(X Lron] > a? + ¢} (168)
is of measure zero. Thus, we get uniform integrablity, so that Theorem 4.8.2 implies X7, is uniform
integrable.
Consequently, by OST from class, we have
EX7 =EXg =0 = ES2 = o’ET (169)
= ET = E:;% > Z—Z (170)
as desired. O

Problem 4.8.4.

Proof. We use the same notation as above and assume that ET" < co. Note that Xra, is also a martiangle,
then we must have

EXran =EXo=0 (171)
which implies
ES3.,,, = oc’E[T An] (172)
Since 0 < T An 1T, we may apply MCT and deduce that
o’E[T An] — o°ET (173)
that is
ESZ.,,, — 0°ET < oo (174)

which must holds true for all n and particularly for sup over n. Thus, LP convergence theorem applies, so
we may deduce that

Stan — ST (175)

almost surely and in L?. Chain the above result, we must have
ESZ = o?ET (176)
O

12



Problem 4.8.5.

Proof. (a) For the set up, we assume Sy =  and denote
Zn= (S~ (p—a)n)” = n(l — (p—)?) (177)

By assumption, we know EVj is finite. If EVZ = oo, then the result is trivial. Thus, we must have
EV§ < oo.

Now, we show EZy, = EZ, using theorem 4.8.2. There are two conditions to verify. Consider
E|Zv,| = E|(Sv, — (p — )V0)* = Vo(1 — (p — 9)°) (178)
<EVZ+EV < o0 (179)

For the second condition, note the fact that before hitting stopping time Vj, gambler’s wealth is bounded.
Intuitively, that is if the gambler wins money in every single round before time V{, then

Snlvosn <z +n < oo (180)
Therefore, we have

|ZnLvysn| = |(Sn = (P = @)n)* = n(1 = (p — 0)*) |Lvy>n (181)
< (S +1)° Lypon 4+ nlyysn < 00 (182)
The above immediately implies that Z, 1y, is uniformly integrable, so that Theorem 4.8.2 is justified

and
EZy, =EZy = 22 (183)

then
(r = @°EVg — (1= (p — 9)*)EVp = 2 (184)

Write ¢ = 1 — p and solve for EVZ, we get

Ap?x + 2pz? — dpx — 2

EVE = 1
K 1 (s
It follows that
4p’x + 2px? — 4dpx — 22 x?
VarVy = EVZ — (EVp)? = - 186
o = BV (E0) =1 -2y 150
Ap — V)pa
— 1
(2p—1)° (187)
1-(p—q)?
=r —a 188
UL (s
which proves the claim.
(b) For the set up, we denote
V, =min{n >0: S5, =y} (189)
and
N, =V, -V, (190)

13



fory € {1,--- ,x—1,2}. By construction, we know N,’s must be IID with finite variance, say VarN; := c.

Since we assume Sy = x, then we must have

Vey=min{n>0:S5,=2}=0 (191)
Thus, we get
Vo=Vo+Ve=> N, (192)
y=1
so that
VarVy = Y _VarN, = zVarN; = cx (193)
y=1
as desired.
O

Problem 4.8.6.
Proof. (a) For the set up, we denote the exponential martingale as
X,, = exp(65,)/6(0)" (104)
where

¢(0) = Eexp(0¢;) = pe’ + ge™? (195)

First, we make some observation regarding function ¢. At # = 0, we have

6(0) = 1 (196)
¢'(0)=p—q<0 (197)
¢"(0) = ¢(0) > 0 (198)

Therefore, assume 0 < 0, we must have
6(6) > 1 (199)

Now, we justify why we may use Theorem 4.8.2, consider

_ e’V < 0Sv,1 _
Since Sy = = > 0, then S,, must be positive before it hit zero, that implies 65,, < 0 and
[ Xnlvysn| = lexp(650)/0(0)" [Lvy>n (201)
< exp(0Sn)1vy>n (202)
<exp(0S,) <1 (203)

Uniform integrability immediately follows, then we know X, 1y, is uniformly integrable. Thus, we
may use theorem 4.8.2 to conclude

EXy, = EXy = e (204)

that is
B[] _ o) Yol = o 205
LW)}— [6(0)""°] =e (205)

14



(b) Suppose 0 < s < 1, then we have

and

In this notation, part (a) translates into

Solve for ¢’ from equation we get

e

0 _

1—+/1— 4pgs? or 1+ /1 — 4pgs?

2ps 2ps

Note that since we assume 0 < 0, then

eagl

However, the second root is at least one, i.e.,

14 +/1 — 4pgs? S

L
2ps 2ps —

W | =

>1

Thus, the second root is eliminated by this criteria, and we have

as desired.

Es%o — (1 — /1 —4pgqs?

2ps

Note that in problem 2, part (b), we have defined

forye {1,---,2— 1,2} and

Thus, we have

as desired.

Ny=Vy-1 -V,
=3,
y=1

Es"* =E [825:1 Ny]
= I _,Es™

= (B5)"
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(206)

(207)

(208)

(209)

(210)

(211)

(212)

(213)

(214)

(215)

(216)
(217)



Problem 4.8.7.

Proof. First, note that X,, := S2 — n is martingale.
If ET = oo, then we are done since Cauchy-Schwarz inequality tells us

oo = (E[T-1]) <ET?-E[1?] = ET? (218)

Therefore, we assume ET < co.
For the set up, we use Theorem 4.8.2 to get desired result. First, we need to justify the assumption of
Theorem 4.8.2. Consider

E|X7| =E|57 —T| (219)
<ESZ +ET (220)
<a®>+ET < o0 (221)
and
[ Xnlrsa| = [Sh = n|lrss (222)
< S?le>n + n]-T>n (223)
<a?+T < o0 (224)

Thus, uniform integrability of X,,1p~, immediately follows. Theorem 4.8.2 implies that X,,or is uniformly
integrable. Hence,

0=EXy=EX;y = ES? =E[T] (225)

By definition of stopping time T', we know St < a, then

a®> =ET (226)
Now, note that Y,, is a martingale iff
EYpt1 | Fn] = Yn=b+c—5+(20—6)-n=0 (227)
Solve for the above, we get b = 3,¢ = 2, then
Y, = S —6nS2 + 3n% + 2n (228)

is a martingale. If Y;, is a martingale, then so is Y,r7. By property of martingale, we get
EYar =EYy =0 (229)
that is

E [s‘*AT +3AT)2+2(nA T)} —E[6(nAT)S2,,] (230)

n

By the same tautology of stopping time definition and B/MCT, we get

E [a* 4 3T% + 2T = E [6Ta’] (231)
Solve the above, we get
4 2 2
E7? = 24 2% (232)
3
as desired. 0
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Problem 7.1.3.

Proof. If EW or EW? = oo, then we are done. Assume not, then W < oo almost surely. Note that the fact

Bs ~ N(0, s) implies
EB, = 0 and EB? = VarB, =t

Note that EB; =0 = E|B;| < 00, so Fubini is justfied. Apply Fubini’s theorem, we get

t t
EW =E {/ Bsds} = / EBsds =0
0 0

E|B,By| < VEB? - \/EB? = (st)"/* < o0

so that Fubini is justified for the following computation. Consider

t t t
EW? =E (/ Bsds> =E (/ By, dsy / Bszd@)
0 0 0
t t
E (/ / leBSQd81d82>
0 JO
t t
:/ / E[BSIBSZ]dsldSQ
0 JO
t t
= / (/ s1 A Sgdsl) dso
0 0
t S2 t
= / (/ s1 N Sodsy +/ S1 N\ SQdSl) dss
0 0 S2
t S2 t
:/ (/ 81d81 +/ 52d81> d52
0 0 S2

t
= / (522/2 + sot — s%) dso
0

21

2 2 3 3
We claim W must be Gaussian. Apply integration by parts on W, we get

t t
W:/ Bsds:tBt—/ sdB,
0 0
t t
- / tdB, — / sdB,
0 0

-/ (¢~ s)aB,

Po={0=tg<ti < - <t; < - <tp,=t}

Cauchy-Schwarz tells us

2

Denote the n-th partition of [0, t] as

then the integral becomes

t n
/0 (t = s)dB, = lim > (ti—s) (B, = Bi,_,)

i=1

(233)

(234)

(235)

(236)
(237)
(238)
(239)
(240)
(241)
(242)

(243)

(244)
(245)

(246)

(247)

(248)

For all partition, by independence of increment, we know family of {(Bti — Bti,1>}ieN is independently
Gaussian. Therefore, W, as the limit of sum of independent Gaussians, is also Gaussian. Combined with

our calculation, we know W ~ N(0,t%/3), as desired.
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Problem 7.1.6.
Proof. Observe that

2 2
E( > AL, —t] =Var| Y AL —t|+|E| DY AL, —t (249)
m<2n m<2n m<2n
2
= Y VarAl 4+ D EBAL, —t (250)
m<2n m<2n

Thus, it suffices to find VarA? | and EA? . Note that by property of Brownian motion, we have

Ay = B(tm2™") — B(t(m —1)27") (251)
L 9=/ (B(tm) — B(t(m — 1)) (252)
L 972 (B(t) - B(0) (253)
=27"2A (254)
By definition, we know Aj g 4 N(0,t). Tt follows that
EAZ , =2""EA} =27t (255)
and
VarA2 | =272"VarA? ;= 272" .2 (VarA; o) = 2727+ 42 (256)
Plug the above back to equation [250] we get
2
SoVarA? 4| Y EAY —t]| =2m- (27 42) 02 =27 g2 (257)
m<2n m<2n
Thus, we may conclude
2
E( > A2, —t] =274 (258)
m<2n
For the second part, applying Markov’s inequality, we get
2
1 1
E P Z Agn,n -t 2 E <E Z A?n,n -1 (259)
m<2m m<2mn
Plug in the value we computed, we get
1
P 2yl s 2| <cogontl, 242
doAL -t >~ <2 n?t (260)
m<2n
Observe the simple fact that
> 2 = 12¢% < oo (261)
n—oo
Thus, BC lemma implies that
P> ALt >Lio ] =0 (262)
m,n = n
m<2n
which proves the desired result. O
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Problem 7.2.4.

Proof. (i) First, define the stopping time

(i)

T=inf{t > 0: B(t) > 0} (263)
then theorem 7.2.4 implies that
P(r=0)=1 (264)
In other words, for sufficiently small ¢ > 0, we must have B(t) > 0. Formally, that is
limsup B(t) > 0 (265)
t10

Also, continuity of Brownian motion ensures B(t) is bounded. Combine with the fact that f(¢) > 0 for
all t > 0, we get

lim sup, o B(t)
f@®)

where ¢ € [0,00] and is measurable to FJ . By theorem 7.2.3, it follows that for any constant a, we
have

=limsup B(¢)/f(t) = ¢ (266)
t10

Py (c=a) € {0,1} (267)
which implies that ¢ could only be a constant, almost surely.

We construct a new Brownian motion. By theorem 7.2.6, given Brownian motion B(t) starts at zero,
we know

X(t)=tB(1/t) (268)
is also Brownian motion for ¢ > 0. Then, define s = %, we apply theorem 7.2.8 on X (t), which yields
B
0o = limsup X (t)/vt = limsup vtB(1/t) = limsup \/1/sB(s) = lim sup () (269)
t—o0 t—o0 sl0 510 \/g
with probability one, as desired.
O

Problem 7.2.2.

Proof. First, we make some observations. Note that ¢ € (0,1). Then, the event {L < ¢t} means the last time
a Brownian motion visits zero is before time t. That is to say, between the time interval (¢, 1], the Brownian
motion does not visit zero. In other words, this Brownian motion’s zero hitting time must be after time one.
If we use shift transformation to cut off the path before time ¢, so that time ¢ became time zero, we get

{LSt}Z{TQOQt>1—t} (270)

It follows directly from Theorem 7.2.1 that

Py(L<t)

PQ(T009t>1—t)

|
=

(271)

0 (1700, >1—t) (272)
(Eo (Lrpo0, 51— | F7')) (273)
(Eo (11y>1-¢00: | F77)) (274)
(275)

(276)

(277)

Eo

Eo
=Eo (]EBt (1To>1 t)) 275
— By (Pp, (To > 1 — 1)) 276
:/P(Bt:y|BO:O)IP’y(T0>1—t)dy 277
_ / Po (B, = y)P, (To > 1 — ) dy (278)
=/m&w%@vl4ﬂy (279)
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as desired. O
Problem 7.2.1.

Proof. First, we make some observation. Note that R is the first time that a Brownian motion hits zero
after time one. If we use shift transformation to truncate the path before time one, so that time one became
the starting time zero, we get

R:T0091+1 (280)
It follows directly from Theorem 7.2.1 that

P.(R>1+1t)=P,

—~

T0001>t)

as desired. 0
Problem 7.4.2.

Proof. Run similar argument as in the proof of (7.2.3), we get

Po(R<1+1t) = / p1(0, y)Py(Ty < t)dy = 2 / 0P (Ty < t)dy (288)

The second equality is due to the fact that Brownian motion is normally distributed, so that symmetry
follows. Plug in the the density function (7.4.6) from example 7.4.2, we have

Po(R<1+t) = 2/000 p1(0,9)Py(Ty < t)dy (289)
= 2/000 p1(0,9)Po(Tyy < t)dy (290)
_ 2/000(%)—1/2 exp(—y?/2) (/Ot(%s?’)_l/ZyeXp(—y2/2s)ds> dy (201)
= i/ooo /Ot exp(—y?/2)s ™3/ ?y exp(—y?/2s)dsdy (292)
= i/ooo /OtyeXP(—yZ’/2 —y?/2s)s ™32 dsdy (293)
- % /ot o </0°° yexp(—y*/2 - y2/25)dy> ds (204)
- 71T/0 o (sil) ds (205)
- 71r/0t s(s\{&—gl)ds (296)
B M (297)
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It follows that

Po(R=1+1) :%(IPO(RS 1+1)) (298)

4 (ret) o

= 2.2 (aretan(v2)) (300)

- % ' 2t1/2(1t +1) (301)

- ntl/Q(lt +1) (302)

as desired. O

Problem 7.2.3.

Proof. First, apply Markov property on Theorem 7.2.5, we get inf{t € (a,b) : B = B,} = a almost surely.
It follows there exists a decresing sequence {t,,} with t,, | a and B, = B,.

Similarly, apply Markov property on Theorem 7.2.4, we get inf{t € (a,b) : B > B,} = a almost surely,
so that there exists a decreasing sequence {s,} with s,, | a and B, > B,.

With the right arrangement of subsequence, we can form a strictly decreasing sequence with

tny > Spy > tpy > Spy >0 >a (303)

and B, = B,, Bs, > B, for k € N. By continuity of Brownian path, there must exists some local maxima
within each (¢, ,,tn,) interval, say My, € (tn,.,,tn,). By construction, M,, | a, as desired. O

Problem 7.4.3.

Proof. (a) For the set up, we define the stopping time S = inf{s < ¢ : Bs = a} and denote

1 t and t—
Ys(w)z{ s<tandu<w(t—s)<wv (304)
0 ow.
and
Ysl(w):{l s<tand 2a—v<w(t—s)<2a—u (305)
0 ow.
By strong Markov property, Theorem 7.3.9, on the event {S < oo}, we have
EO (YSOGS | fs) :EBSYS :EaYS (306)
Eq (Yé ofs | ]:S) = EBSYS/' = EaYS/ (307)

By symmetry of normal distribution, we have E,Ys = E,Y}, so that the above two equations are the
same. On event {S < oo}, it immediately follows that

Py (T, < t,u < By <v) =Eq(Yso06g) (308)
=Eo (Eo (Ysofs | Fs)) (309)
= Eo (Eo (Y4005 | Fs)) (310)
— Eo (V4 0 0s) (311)
=Py (2a —v < B, <2a—u) (312)

as desired.
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(b) Send u,v — z, we get

Py (T, <t,By =) =Py (B =2a — ) = pi(0,2a — x) (313)

(c) Since {T, <t} = {M; > a}, then part (b) implies that

Py (M > a, By = ) = Py (By = 2a — x) = p(0,2a — x) (314)
It follows that
Py (My <a,By=z)=1-—p(0,2a — x) (315)
so that
0
fom, By (a,x) = %0 (1 —p(0,2a — z)) (316)
_9 (1 — (2nt)" 2 exp(—(2a — x)2/2t)> (317)
Oa
V220 - m)e
- 7 (318)
2(2(1 — J?) —(2a—x)?/2t
=——¢ : 319
V23 (819)
as desired.
O

Problem 7.4.4.

Proof. We compute it directly, consider:

Po(Asy) = 2 / Pa(0, )P (T <t — 5)da (320)
0
- 2/ (2ms) "2 e /2P (Ty < t — ) da (321)
0
= 2/ (2ms) V2 e~ /2Py (T, < t — ) da (322)
0
o] t—s
= 2/ (2ms) " 1/? e /28 (/ (27rr3)_1/2xe_m2/2rdr) dx (323)
0 0
= 2 /oo e—%7/2s (/t_s T_B/Qxe_xz/%dr) dx (324)
vV 27s - vV 2T 0 0
t—s oo
= 7T18/0 r3/2 </0 zexp (— (1/2r + 1/2s) 2?) dx> dr (325)
t—s
- / r32 (2 ) g (326)
TS Jo s+r
1 t—s S\/,'j
= 2
WE/O sar (327)
1 2s\/t/s —1
= v ( 8\//_783 - arctan (\/t/s— 1)) (328)
2. T
= ( \1/§ s - ) - arctan (\/t/s - 1) (329)
T —s
_2 - arctan < b S) (330)
T s
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Finally, recall the well-known arctan identity

1
arctan(x) = arccos | ———
(@) (\/ 1+ x2)

that holds for all z > 0. Since ,/t_TS >0, we get

2 < t s> 2 1
— - arctan — -arccos | ——
™ S s 14 t=s

S

2 1
= — -arccos | —
T \/z
2 S
= — - arccos -
s t

as desired.

Remark 1. The hint provided by Durrett is incorrect, note that s is missing on the exp function:

Po(Asy) = 2/ (2ms)~Y/? e~ /2P, (To < t—s)dx
0
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