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1 Conditional Expectation

Definition 1 (conditional expectation). E(X | F):=Y <= Y € F andVAe F, [, XdP = [,YdP
Theorem 1 (4.1.9). (a) E(aX +Y | F) =aE(X | F) +EY | F)

(b)) X <Y = E(X |F)<E{Y | F)

(¢) Xn>0,Xn 1 X,EX < 0o = E(X, | F) 1 E(X | F)

Theorem 2 (4.1.12). FCGE(X |§) e F = E(X | F)=E(X |9)

Theorem 3 (4.1.13 Tower property). F; C Fo = E(E(X | F2)F1) =EEX | F1)F2) =E(X | F1)
Theorem 4 (4.1.14). X € F,E[Y|,E[XY| < 0o = E(XY | F) = XE(Y | F)

Theorem 5 (“minimizer” 4.1.15). EX? < oo = Y :=E(X | F) € F = min{E(X - Y)?}

2 DMartingale

Definition 2 (Martingale). F, is filtration, X,, is said to be adapted to F,, if X,, € F, for all n. X, is
martingale if

(i) E|X,| < oo
(i) X, adapted to Fy,
(i1i) E(Xpy1 | Fn) = Xp for alln

Theorem 6 (4.2.4/4.2.5). The following claim applies for super/sub-martingale and martingale: If X,, is a
martingale, then for n > m,E(X,, | Fn) = Xm.

Definition 3 (predictable sequence). H,,n > 1 if H, € Fn_1. If you bet according to a gambling system,
then winning at time n would be

n

(H-X), =Y Hp(Xm—Xm_1) (1)

m=1

N stopping time takes value in N, then {N =n} € F,, and H,, = 1y>,, is predicable and

(H-X), = Z In>k (X — Xp-1) (2)
k=1

Theorem 7 (4.2.8 Predicable). X, super-martingale. If H, > 0 is predictable and H, bounded, then
(H - X), is a super-martingale.



Theorem 8 (4.1.10 Jensen). If ¢ is convex and E|X|,E|o(X)| < oo, then
@ (E(X | F)) <E(p(X) | F) 3)
For example, |-| is convez.

Theorem 9 (4.2.11. Martingale convergence theorem). supEX;" < co = lim, 00 X, — X a.s.,E|X]| <
00

Theorem 10 (4.2.12/super-martingale). X,, >0 = lim, 0 X, = X a.s.,EX <EX,

Theorem 11 (4.3.1 Bounded increment). X,, martingale with |X,,+1 — X, | < M < oo, then either lim X,
exists and is finite or oscillate between +oo and —oo.

C = {lim X,, exists and is finite} (4)
D = {limsup X,, = 0o and liminf X,, = —co} (5)
then P(CUD) = 1.

Definition 4 (Galton-Watson process). & IID, define a sequence Z,,, the number of individuals in the nth
generation, Zg = 1, then

if Zy =0 ©

{ Pt i Z, >0

Zn+1 = "

0

Lemma 1 (4.3.9 Branching process). F,, = 0(§),u = E¢, Z,,/u™ is non-negative martingale.
add why EZ,, = u”

Theorem 12 (4.3.10 Sub-critical). p <1 = Z, =0 for all n large, so Z,/u™ — 0.

Theorem 13 (4.3.11 Critical). p=1,p1 =P =1) <1 = Z,, =0 for all n large.

Definition 5 (Generating function). Vs € [0, 1], ¢(s) = Zkzopksk =2 ko P(§" =k) sk,

Theorem 14 (4.3.12 Supercritical). u > 1,Zy =1 = P(Z, = 0 for some n) = p, the only solution of
e(p) = p in[0,1).

Theorem 15 (4.3.13). W =1lim Z,,/u™ # 0 iff > prklogk < co. " k%pp < oo is sufficient for a nontrivial
limat.

Theorem 16 (4.4.2 Doob’s inequality). Let X,, be sub-martingale, then

X, = max X} (7)
0<m<n
A>0and A={X, > \}. Then
AP(A) <EX,14 <EX; (8)

Theorem 17 (4.4.4 LP maximum inequality). If X, is a sub-martingale, then for 1 < p < oo
Boey < (25) B )
Theorem 18 (4.4.6 L? convergence theorem). sup E|X,,|” < oo with p > 1, then X,, — X a.s. and in LP.

Theorem 19 (4.4.7 Ortho of martingale increment). EX2 < co,m < n,Y € F,, with EY? < oo, then
E(X, — Xn)Y)=0. If £t <m < n, then E(X;, — X)) (X — X¢)) = 0.



Definition 6 (Uniform integrability). UI iff

1
M—o0

i (supB (X051 > 00)) =0 (10)
Theorem 20 (U.I equivalence 4.6.7). U.I <= Converges a.s. and in L' <= converges in L' <=
there exists an integrable r.v. X with X, =E (X | Fy,)

Theorem 21 (4.6.8). F,, 1 F, then E(X | F,,) = E(X | Fso) a.s. and in L.

Theorem 22 (4.6.9 Levy’s 0-1 law). F, T Foo, A € Foo, then E(14 | Fp) = 14 a.s.

Theorem 23 (4.8.1). X,, U.IL implies Xyan U.L

Theorem 24 ( ).

4.8.2). (Check exercise) E|Xn| < 00 and Xp1nsyn U.L, then Xypn UL and EXg < EXy.

Theorem 25 (OST). Suppose Xnnn is a U.I martingale. Let Xoo = limy, 00 Xnan 0n the event {N = oo},
Then E[Xy] = E[X(

].
Theorem 26 (4.8.3). X, U.L implies for N < oo, EXg < EXy < EX, = Elim X,,.
Theorem 27 (4.8.7 SSRW). P(6=1)=P(=-1)=1/2,Sy =2 and N =min (n: S, &€ (a,b)), then

b—x T—a

— Pi(Sy=b)=7— EN=(b-1)z—0 (11)

Theorem 28 (4.8.9 ASRW). (practice) P(( =1) =p,P(§ =—-1) =¢q,Sy =2 and N =min(n: S, & (a,b)),
then

Px(SN = CL) =

(a) ¢(y) = (q/p)", then ©(Sy) is martingale.
(b) T, =inf{n : S, = z}, then for a <z < b, P,(T, < Tp) = % and Py(Ty, < Tp) = %

If p>1/2, we get
(c) a <0,P(min, S, <a)=P(T, < ) = (%)ﬂ

(c) b>0, then P(Ty, < 00) = 1 and ET}, = qu

3 Brownian motion

Definition 7 (BM). (a) Independent increment, (b) B(s+t) — B(s) ~ N(0,t), (¢) continuous
Definition 8 (BM translation invariance). {B;— By} independent and has the same law as BW with By = 0.
Definition 9 (BM scaling relation). By = 0, then By, 4 t'/2B,

Definition 10 (Markov property/non-rigorous). If s > 0, then B(t+ s) — B(s),t > 0 is a Brownian motion
that is independent of what happened before time s. What happened before s:

Fi=0(Br:r<s) (12)

Infinitesimal peek at the future:
F& =N s T (13)
AeFfif Ae Fl. for anye>0.
Theorem 29 (7.2.3 Bluementhal’s 0-1 law). A € F, then for all x € R% P, (A) € {0,1}.
Theorem 30 (7.2.4). 7 =inf{t > 0: B; > 0}, then Py (r =0) = 1.



Theorem 31 (7.2.5). Top =inf (¢t > 0: B, =0) then Py(Tp =0) = 1.
Theorem 32 (7.2.6 Inversion symmetry). By starts at zero implies Xy = tB(1/t) BM starts at zero.

Theorem 33 (7.2.8). B, start at zero then with probability one, we have

limsup B, /vt = oo litminth/\/i = —00 (14)
—00

t—o0

Lemma 2 (from class). b>a>0,T, - T, L T, and T, — T, 4 Ty_a
Theorem 34 (from class/Reflection principle 7.4.2). Po(T, < t) = 2Py(B; > a)

Theorem 35 (from class/Zero set of BM). Z = {t: B, = 0}. ¢t € Z is isolated means Je > 0, (t — €,t +€) N
Z = {t}. P(Z has no isolated point) = 1.
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