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1 BM and SRW

Theorem 1. Define Mt = maxs∈[0,t] Bs and Xt = Mt −Bt, then we have (Xt)t≥0
d
= (|Bt|)t≥0.

Theorem 2 (Durrett 7.5.3). Bt is a martingale w.r.t Ft. If a < x < b, then Px(Ta < Tb) = (b− x)/(b− a).

Theorem 3 (Durrett 7.5.5). Let T = inf{t : Bt /∈ (a, b)}, where a < 0 < b, then E0T = −ab.

Theorem 4 (Skorokhod’s representation theorem). If EX = 0,EX2 < ∞, then there eixsts T for BM so

that BT
d
= X and ET = EX2.

Remark 1 (How to find the coupling?). Consider the following example: Let ξ an random variable with

P [ξ = 1] = P [ξ = −1] =
1

6
P [ξ = 2] = P [ξ = −2] =

1

3
(1)

Imagine we have a symmetric pair of levels, (1, 2) and (−2,−1). In essence, we are cooking up stopping
times so that the exit probability align with the distribution of ξ. Our main tool is Theorem 2. By symmetry
of (1, 2) and (−2,−1), it suffices to only consider the former.

For any x ∈ (1, 2), we wish to let BM exit 1 with probability 1/6 and 2 with probability 1/3, that is

1

2
· Px(T1 < T2) =

1

2
· 2− x

2− 1
=

1

6
=⇒ x =

5

3
(2)

(half since we only get half the “picture”) Thus, we know by picking BM starts at 5/4 or −5/4 will have the
desired results. We denote the starting point as

T0 = inf{t : |Bt| =
5

3
} (3)

Suppose BM has hit T0, to move to 2, we define

T2 = inf{t ≥ T0 : Bt =
6

5
BT0

} (4)

To move to 1, we define

T1 = inf{t ≥ T0 : Bt =
3

5
BT0} (5)

Thus, we have obtained the desired stopping time

T := T1 ∧ T2 (6)

Theorem 5 (Durrett 8.1.2). Xn IID with distribution F , mean zero and variance one. Let Sn =
∑

n Xi,

then there exists Tn such that Sn
d
= BTn

and Tn − Tn−1 are independent and identically distributed.

Theorem 6 (Donsker’s theorem/Skorohod coupling). S(n·)/
√
n ⇒ B(·).

Theorem 7. Suppose L is continuous for all f ∈ C[0,∞), then L (S(n·)/
√
n) ⇒ L (B(·)).

Theorem 8 (SRW Reflection Principle, Durrett 4.9.1). If x, y > 0, then the number of path from (0, x) to
(n, y) that are zero at some time is equal to the number of path from (0,−x) to (n, y).
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2 Stochastic Calculus

2.1 Ito’s Fundamentals

Definition 1 (H2). H2 = H2[0, T ] = L2(dP × dt) and f ∈ H2 iff E
[∫ T

0
f2(ω, t)dt

]
< ∞.

Definition 2 (H2
0). H2

0 ⊆ H2 and are consisted of function of the form

f(ω, t) =

n−1∑
i=0

ai(ω)1(ti<t≤ti+1) (7)

Let I : H2
0 → L2(dP ) to be a continuous mapping, then the above becomes

I(f)(ω) =

n−1∑
i=0

ai(ω){Bti+1 −Bti} (8)

Definition 3 (Ito Integral).

Xt =

∫ t

0

BsdBs =
1

2
(B2

t − t) (9)

Lemma 1 (Density of H2
0 in H2). f ∈ H2[0, T ] iff ∃fn ∈ H2

0[0, T ] s.t fn
L2

→ f and

L2(dP × dt) := L2[Ω× [0, T ]] = {f(ω, t) | E
∫ T

0

f2(ω, t)dt < ∞} (10)

Definition 4 (L2
LOC). The class L2

LOC = L2
LOC[0, T ] consists of the type of function f : Ω× [0, T ] 7→ R such

that

P

(∫ T

0

f2(ω, t)dt < ∞

)
= 1 (11)

Lemma 2 (Ito’s Isometry, Steele 6.1). For f ∈ H2
0, we have ∥I(f)∥L2(dP ) = ∥f∥L2(dP×dt). Alternatively,

we may write EI(f)2 = E
∫ T

0
f2(ω, s)ds. For example, we get

E

[(∫ t

0

|Bs|1/2dBs

)2
]
= E

[∫ t

0

|Bs|ds
]

(12)

Definition 5 (Standard Process, Steele 8.1). Xt is a standard process if it has the following representation

Xt = x0 +

∫ t

0

a(ω, s)ds+

∫ t

0

b(ω, s)dBs (13)

where

P

(∫ T

0

|a|ds < ∞

)
= 1 P

(∫ T

0

b2ds < ∞

)
= 1 ⇐⇒

(
b ∈ L2

LOC[0, T ]
)

(14)

Theorem 9 (Quadratic Variation of Standard Process, Steele 8.6). Let Xt be a standard process with

Xt =

∫ t

0

a(ω, s)ds+

∫ t

0

b(ω, s)dBs (15)

then its quadratic varation is

⟨X⟩t =
∫ t

0

b2(ω, s)ds (16)
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2.2 Useful propositions

Proposition 1 (Gaussian Integrals, Steele 7.6). If f ∈ C[0, T ], then the process defined by Xt =
∫ t

0
f(s)dBs

is a mean zero Gaussian process with indep’ increments and covariance function Cov(Xs, Xt) =
∫ s∧t

0
f2(u)du.

Definition 6 (Local Martingale). If a process Mt is adapted to Ft, then Mt is called a local martingale
provided there is a nondecreasing sequence {τk} such that τk ↑ ∞ with probability one and Mt∧τk − M0 is
true martingale.

Proposition 2 (L2
LOC function to local martingale, Steele 7.7). f ∈ L2

LOC, then there exists a local martin-
gale Xt such that

P
(
Xt(ω) =

∫ t

0

f(ω, s)dBs

)
= 1 (17)

with localizing sequnce to be

τn(ω) = inf{t :
∫ t

0

f2(ω, s)ds ≥ n or t ≥ T} (18)

Proposition 3 (Exit Probability, Steele 7.8). Xt, local martingale with X0 = 0. Let τ = inf{t : Xt =
A or Xt = −B} satisfies P(τ < ∞) = 1, then E(Xτ ) = 0 and P(Xτ = A) = B

A+B .

Proposition 4 (Doob’s analog, Steele 7.9). Xt local martingale and τ stopping time, then Yt = Xt∧τ is also
a local martingale.

Proposition 5 (Loc to Hon, Steele 7.10). Xt local martingale, and B is a constant such that |Xt| ≤ B,
then Xt martingale.

Proposition 6 (Loc to Hon, Steele 7.11). Xt non-negative local martingale with E|X0| < ∞ is also a super
martingale. If EXT = EX0, then Xt is a martingale.

Proposition 7 (Martingale PDE condition, Steele 8.1). f ∈ C1,2(R+ × R) and

∂f

∂t
+

1

2

∂2f

∂x2
f = 0 (19)

then Xt = f(t, Bt) is local martingale. If

E

[∫ T

0

{∂f
∂x

}2(t, Bt)dt

]
< ∞ (20)

then Xt is martingale.

Proposition 8 (Martingale PDE condition for Rd, Steele 8.3). f ∈ C1,2(R+,Rd) and Bt ∈ Rd, then f(t, Bt)
is local martingale given

ft(t, x) +
1

2
∆f(t, x) = 0 (21)

Consequently, for f(Bt), Bt ∈ Rd, we have

∆f = 0 (22)

iff f(Bt) local martingale.

Corollary 1 (Quadratic Varation PDE condition, Class 04/10). If ft+
1
2fxx = 0, then f(⟨Z⟩t , Zt) is a local

martingale.
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Theorem 10 (Martingale Representation Theorem, Steele 12.3). Xt is a martingale w.r.t Ft. If there exists
a T such that E(X2

T ) < ∞, then there is a ϕ ∈ H2[0, T ] such that

Xt =

∫ t

0

ϕ(ω, s)dBs (23)

The above holds for local too.

Theorem 11 (Levy’s Representation Theorem, Steele 12.4). ϕ ∈ L2
LOC[0, T ] and

Xt =

∫ t

0

ϕ(ω, s)dBs (24)

If we have

P
(∫ ∞

0

ϕ2ds = ∞
)

= 1 τt := inf

(
u :

∫ u

0

ϕ2ds ≥ t

)
(25)

then Xτt is BM.

Theorem 12 (BMC, Steele 12.5). Suppose Mt is a martingale. If EM2
t < ∞ and ⟨M⟩t = t, then Mt is a

standard BM.

Remark 2 (What if ⟨Z⟩t ̸= t, class 04/10). Assume ⟨Z⟩t ↗ ∞. Define τt to be the first time ⟨Z⟩t = t, then
we have the following consequences

(i) lim supZt = − lim inf Zt = ∞.

(ii) Zτt = Bt and sup{s:⟨Z⟩s≤t} Zs
d
= sup0≤s≤t Bs.

(iii) T0 = 0, Tk = inf{t : |Zt − ZTk−1| = 1}, then Zτk is BM by HW.

(iv) Define

σM = inf{t : Zs = M} σ′
M = inf{t : Bs = M} (26)

then inft≤σM
Zt

d
= inft≤σ′

M
Bt.

Remark 3 (L operator, Class 04/12). (i) (Space only): Let

dXt = σ(Xt)dBt + µ(Xt)dt (27)

then

(dXt)
2
= σ(Xt)

2 (dBt)
2
= σ(Xt)

2dt (28)

Apply Ito’s formula, we have

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2 (29)

= f ′(Xt){σ(Xt)dBt + µ(Xt)dt}+
σ(Xt)

2

2
f ′′(Xt)dt (30)

= f ′σdBt + {f ′µ+
σ2

2
f ′′}dt (31)

Observe that f ′σ ∈ L2
LOC, by Prop 7.7, should we want f(Xt) to be a local martingale, the other term

must be gone. Recall L operator is defined to be

Lf = f ′µ+
σ2

2
f ′′ (32)

then we may conclude that Lf = 0 iff f(Xt) is a local martingale.
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(ii) (Space and time): Let

dXt = σ(t,Xt)dBt + µ(t,Xt)dt (33)

then

(dXt)
2
= σ(t,Xt)

2dt (34)

Similarly, by Ito’s formula (space and time), we get

df(t,Xt) = ftdt+ fxdXt +
1

2
fxx (dXt)

2
(35)

= ftdt+ fx{σdBt + µdt}+ 1

2
fxxσ

2dt (36)

= σfxdBt + {ft + µfx +
σ2

2
fxx}dt (37)

Note that σfx ∈ L2
LOC, then f(t,Xt) is a martingale iff the other terms are gone. In particular, note

that

ft + µfx +
σ2

2
fxx = 0 ⇐⇒ (dt+ L)f = 0 (38)

Theorem 13 (Existence and Uniqueness, Steele 9.1). Let dXt = µ(t,Xt)dt + σ(t,Xt)dBt with X0 = x0

satisfy

|µ(t, x)− µ(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ K|x− y|2 (39)

|µ(t, x)|2 + |σ(t, x)|2 ≤ K
(
1 + |x|2

)
(40)

then there exists a solution Xt that is uniformly bounded in L2. If Xt, Yt are both continuous L2 bounded
solution, then they are the same almost surely.

Warning: sign of drift would change the form of Mt.

Theorem 14 (Simplest Girsanov Theorem, Steele 13.1). Bt is P-BM and Q is induced by

Xt = Bt + µt (41)

then every bounded Borel measurable function W on C[0, T ] satisfies

EQ(W ) = EP(WMT ) (42)

where Mt is P-martingale defined by

Mt = exp
(
µBt − µ2t/2

)
(43)

Theorem 15 (Removing Drift, Steele 13.2). µ(ω, t) is a bounded, adapted process on [0, T ], Bt is a P-BM,
and Xt given by

Xt = Bt +

∫ t

0

µ(ω, s)ds (44)

The process Mt defined by

Mt = exp

(
−
∫ t

0

µ(ω, s)dBs −
1

2

∫ t

0

µ2(ω, s)ds

)
(45)

is a P-martingale and the product XtMt is also a P-martingale. Finally, if Q denotes the measure on C[0, T ]
defined by

Q(A) = EQ [1A] = EP [1AMT ] (46)

then Xt is a Q-Brownian motion on [0, T ].

5



2.3 Ito’s formula

Theorem 16 (Simple Ito’s formula, Steele 8.1). f ∈ C2(R) and f(Bt), then

f(Bt) = f(0) +

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds (47)

df(Bt) = f ′(Bs)dBs +
1

2
f ′′(Bs)ds (48)

Note the general fact that (dBs)
2
= ds, (dBs)

n
= 0 for n > 2.

Theorem 17 (Ito’s formula with time and space, Steele 8.2). f ∈ C1.2(R+ ×R) and f(t, Bt), then we have

f(t, Bt) = f(0) +

∫ t

0

∂f

∂x
(s,Bs)dBs +

∫ t

0

∂f

∂t
(s,Bs)ds+

1

2

∫ t

0

∂2f

∂x2
(s,Bs)ds (49)

df(t, Bt) = fx(s,Bs)dBs + ft(s,Bs)ds+
1

2
fxx(s,Bs)ds (50)

Theorem 18 (Vector Ito’s formula, Steele 8.3). f ∈ C1,2(R+,Rd) and Bt ∈ Rd, then

df(t, Bt) = ft(t, Bt)dt+∇f(t, Bt)dBt +
1

2
∆f(t, Bt)dt (51)

Theorem 19 (Local Martingale, Class 04/05). Let Zt =
∫ t

0
b(ω, s)dBs, b ∈ L2

LOC and f(Zt). From the
general fact, we have

dZt = bdBt (dZt)
2
= (bdBt)

2
= b2dt (52)

then we have

df(Zt) = f ′(Zs)dZs +
1

2
f ′′(Zs) (dZs)

2
(53)

= f ′(Zs)bdBs +
1

2
f ′′(Zs)b

2ds (54)

Alternatively, we have

f(Zt) = f(Z0) +

∫ t

0

f ′(Zs)bdBs +
1

2

∫ t

0

f ′′(Zs)b
2ds (55)

Theorem 20 (Standard Process, Steele 8.4). f ∈ C1,2(R+,R) and

Xt =

∫ t

0

a(ω, s)ds+

∫ t

0

b(ω, s)dBs (56)

then dXs = bdBs, (dXs)
2
= b2ds, so that

f(t,Xt) = f(0) +

∫ t

0

ft(s,Xs)ds+

∫ t

0

fx(s,Xs)dXs +
1

2

∫ t

0

fxx(s,Xs) (dXt)
2

(57)

= f(0) +

∫ t

0

ft(s,Xs)ds+

∫ t

0

fx(s,Xs)dXs +
1

2

∫ t

0

fxx(s,Xs)b
2ds (58)

df(t,Xt) = ft(s,Xs)ds+ fx(s,Xs)dXs +
1

2
fxx(s,Xs)b

2ds (59)
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Theorem 21 (Quadratic Variation, Class 04/10).

f (⟨Z⟩t , Zt) = f(0, Z0) +

∫ t

0

fx(⟨Z⟩t , Zt)dZt +

∫ t

0

ft(⟨Z⟩t , Zt)dt+
1

2

∫ t

0

fxx(⟨Z⟩t , Zt) (dZt)
2

(60)

= f(0, Z0) +

∫ t

0

fx(⟨Z⟩t , Zt)bdBt +

∫ t

0

ft(⟨Z⟩t , Zt)dt+
1

2

∫ t

0

fxx(⟨Z⟩t , Zt)b
2dt (61)

= f(0, Z0) +

∫ t

0

fx(⟨Z⟩t , Zt)bdBt +

∫ t

0

ft(⟨Z⟩t , Zt)dt+
1

2

∫ t

0

fxx(⟨Z⟩t , Zt)b
2dt (62)

df(⟨Z⟩t , Zt) = fx(⟨Z⟩t , Zt)bdBt + ft(⟨Z⟩t , Zt)dt+
1

2
fxx(⟨Z⟩t , Zt)b

2dt (63)
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