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1 BM and SRW

Theorem 1. Define My = max.e(o,q Bs and Xy = My — By, then we have (X¢),5 4 (1 Bt]) ¢>0-

Theorem 2 (Durrett 7.5.3). B; is a martingale w.r.t F;. If a < x < b, then P, (T, < Tp) = (b—x)/(b—a).
Theorem 3 (Durrett 7.5.5). Let T = inf{¢: B; ¢ (a,b)}, where a <0 < b, then EgT = —ab.

Theorem 4 (Skorokhod’s representation theorem). If EX = 0,EX? < oo, then there eixsts T for BM so
that Br £ X and ET = EX2.

Remark 1 (How to find the coupling?). Consider the following example: Let & an random variable with
PE=1=Pf=-1=- P[{=2]=P[f=-2]=3 (1)

Imagine we have a symmetric pair of levels, (1,2) and (—2,—1). In essence, we are cooking up stopping
times so that the exit probability align with the distribution of {. Our main tool is Theorem[4 By symmetry
of (1,2) and (—2,—1), it suffices to only consider the former.
For any x € (1,2), we wish to let BM exit 1 with probability 1/6 and 2 with probability 1/3, that is

1 1 2—2 1 5

D) (T 2) 9 29-1 6 z 3 (2)
(half since we only get half the “picture”) Thus, we know by picking BM starts at 5/4 or —5/4 will have the
desired results. We denote the starting point as

To = inf{t: |B,| = g} (3)
Suppose BM has hit Ty, to move to 2, we define
Ty =inf{t >Typ: By = gBTo} (4)
To move to 1, we define
Ty = inf{t > Ty : B, = gBTO} (5)
Thus, we have obtained the desired stopping time
T:=T AT (6)

Theorem 5 (Durrett 8.1.2). X,, IID with distribution F, mean zero and variance one. Let S, = X,
then there exists T,, such that S, 4 Br, and T, —T,_1 are independent and identically distributed.

Theorem 6 (Donsker’s theorem/Skorohod coupling). S(n-)/v/n = B(-).
Theorem 7. Suppose L is continuous for all f € C[0,00), then L(S(n-)/v/n) = L(B(-)).

Theorem 8 (SRW Reflection Principle, Durrett 4.9.1). If x,y > 0, then the number of path from (0,z) to
(n,y) that are zero at some time is equal to the number of path from (0, —z) to (n,y).



2 Stochastic Calculus

2.1 Ito’s Fundamentals
Definition 1 (H2). H2 = H2[0,T] = L*(dP x dt) and f € H? iff E [fOT f?(w,t)dt} < 0.

Definition 2 (H2). HZ C H? and are consisted of function of the form

n—1

f(wvt) = Z ai(w)l(ti<t§tz‘+1) (7)

=0

Let I : HE — L%(dP) to be a continuous mapping, then the above becomes

n—1
I(f)(w) =Y ai(w){By, 41 — Bt} (8)
=0
Definition 3 (Ito Integral).
X, = /O BydB, = %(Bf —t) (9)

Lemma 1 (Density of H2 in H?). f € H?[0,T] iff 3f, € H3[0,T] s.t fn L f and
T
L*(dP x dt) := L*[Q x [0,T]] = {f(w,1) | IE/ A (w, t)dt < oo} (10)
0

Definition 4 (L3 ,). The class £3 5o = L2 5[0, T) consists of the type of function f: Qx [0,T] +— R such

that
T
P (/0 [P (w, t)dt < oo) =1 (11)

Lemma 2 (Ito’s Isometry, Steele 6.1). For f € HZ, we have () 2apy = Iflp2apxar - Alternatively,
we may write EI(f)? = EfOT f*(w, s)ds. For example, we get

E [(/OtBs|1/2st>2 =E [/Ot|Bs|ds} (12)

Definition 5 (Standard Process, Steele 8.1). X; is a standard process if it has the following representation

t t
Xt:x0+/ a(w,s)ds—F/ b(w, s)dBs (13)
0

0

where

]P’(/T|a|ds<oo> =1 P(/Tb2d5<oo> =1 < (be L}pc[0,T)) (14)

Theorem 9 (Quadratic Variation of Standard Process, Steele 8.6). Let X; be a standard process with

X, = /Ota(w,s)ds + /Ot b(w, 5)dB, (15)

then its quadratic varation is

<X>t:/0 b (w,s)ds (16)



2.2 Useful propositions
Proposition 1 (Gaussian Integrals, Steele 7.6). If f € C[0,T), then the process defined by X = fot f(s)dBs

. . . . . . . sAt
is a mean zero Gaussian process with indep’ increments and covariance function Cov(Xs, Xy) = fo ?(u)du.

Definition 6 (Local Martingale). If a process My is adapted to Fy, then My is called a local martingale
provided there is a nondecreasing sequence {1} such that 1, T oo with probability one and Mip,, — My is
true martingale.

Proposition 2 (L%OC function to local martingale, Steele 7.7). f € LzLoc’ then there exists a local martin-
gale Xy such that

t
P (Xt(w) :/ f(w,s)dBS> =1 (17)
0
with localizing sequnce to be
t
Tn(w) = inf{t : / fP(w,8)ds >n ort>T} (18)
0

Proposition 3 (Exit Probability, Steele 7.8). X, local martingale with Xo = 0. Let 7 = inf{t : X; =
A or Xy = —B} satisfies P(T < 00) =1, then E(X;) =0 and P(X, = A) = M_LB.

Proposition 4 (Doob’s analog, Steele 7.9). X; local martingale and T stopping time, then Yy = Xinr is also
a local martingale.

Proposition 5 (Loc to Hon, Steele 7.10). X, local martingale, and B is a constant such that |X;| < B,
then X; martingale.

Proposition 6 (Loc to Hon, Steele 7.11). X; non-negative local martingale with E|Xy| < oo is also a super
martingale. If EXt = EXq, then X; is a martingale.

Proposition 7 (Martingale PDE condition, Steele 8.1). f € CY?(RT x R) and

of 102f
o 20020 =0 (19)

then Xy = f(t, By) is local martingale. If

E l/OT{gi 2(t, By)dt| < o0 (20)

then X is martingale.

Proposition 8 (Martingale PDE condition for R?, Steele 8.3). f € CL2(RT,R?) and B, € R?, then f(t, B;)
is local martingale given

1
Consequently, for f(Bi), B; € RY, we have
Af=0 (22)

iff f(By) local martingale.

Corollary 1 (Quadratic Varation PDE condition, Class 04/10). If f;+1 fz. =0, then f((Z),, Z;) is a local
martingale.



Theorem 10 (Martingale Representation Theorem, Steele 12.3). X, is a martingale w.r.t F;. If there exists
a T such that E(X2) < oo, then there is a ¢ € H?[0,T] such that

X, = /0 6(w, 5)dB, (23)

The above holds for local too.
Theorem 11 (Levy’s Representation Theorem, Steele 12.4). ¢ € L?% ,4[0,T] and

Xt:/o o(w, 8)dBs (24)

P</0m¢2d8:oo):1 Tt::inf<u:/0u¢2ds>t) (25)

Theorem 12 (BMC, Steele 12.5). Suppose M is a martingale. If EM? < co and (M), =t, then M; is a
standard BM.

Remark 2 (What if (Z), # t, class 04/10). Assume (Z), /' co. Define 1, to be the first time (Z), =t, then
we have the following consequences

If we have

then X., is BM.

(i) limsup Z; = — liminf Z; = oco.
.. d
(i) Z., = By and SUD(4:(7). <t} Zs = supg<s<; Bs.
(i1i) To = 0,Ty = inf{t: |Z; — Zp, 1| = 1}, then Z,, is BM by HW.
(iv) Define
oy =inf{t: Zg =M} o), =inf{t: B, = M} (26)
then inftSO-M Zt i inftggﬁw Bt-

Remark 3 (L operator, Class 04/12). (i) (Space only): Let

then

(dX)? = 0(Xy)? (dBy)” = o(X,)2dt (28)

Apply Ito’s formula, we have
& (X0) = FC)AX, + 5 (X (dX)? (29)

2
= f{(Xe){o(Xy)dB; + p(X¢)dt} + @f”(Xt)dt (30)
2

= flodB, + {f'u+ "7 F}dt (31)

Observe that f'o € L3 ¢, by Prop 7.7, should we want f(X,) to be a local martingale, the other term
must be gone. Recall L operator is defined to be

2

Lf=fn+ G f (32)

then we may conclude that Lf = 0 iff f(X:) is a local martingale.



(ii) (Space and time): Let
dX, = o(t, X,)dB; + p(t, X,)dt (33)
then
(dX,)* = o(t, X,)%dt (34)

Similarly, by Ito’s formula (space and time), we get

A1 (6 X0) = fut + oo+ 3 fuo (dX,)° (35)
= fidt + f.{odB; + pdt} + % fewo?dt (36)

2
= 0 fodBy + {fy + pufa + % fus el (37)

Note that o f, € L% 50, then f(t,X:) is a martingale iff the other terms are gone. In particular, note
that

2
fotnfot Gl =0 = (dt+L)f =0 (38)

Theorem 13 (Existence and Uniqueness, Steele 9.1). Let dX; = u(t, X¢)dt + o(t, X;)dB; with Xo = xo
satisfy

lult,2) = p(t.y)* +lo(t,2) = o(t,y)]” < Kz —y/* (39)
(@) + ot 2)* < K (1+[af*) (40)

then there exists a solution X, that is uniformly bounded in L%. If X,,Y; are both continuous L? bounded
solution, then they are the same almost surely.

Warning: sign of drift would change the form of M;.
Theorem 14 (Simplest Girsanov Theorem, Steele 13.1). B; is P-BM and Q is induced by

Xy =B+ pt (41)
then every bounded Borel measurable function W on C[0,T)] satisfies
Eq(W) = s (W Mr) (42)
where M; is P-martingale defined by
M, = exp(uB; — (i*t/2) (43)
Theorem 15 (Removing Drift, Steele 13.2). u(w,t) is a bounded, adapted process on [0,T], By is a P-BM,
and X; given by

t
X, =B —I—/ w(w, s)ds (44)
0

The process M defined by

My = exp ( /Otu(w,S)st - ;/Ot ,uz(w,s)ds) (45)

is a P-martingale and the product X:M; is also a P-martingale. Finally, if Q denotes the measure on C[0,T]
defined by

Q(A) = Eq [14] = Ep [14M7] (46)

then X is a Q-Brownian motion on [0,T].



2.3 Ito’s formula

Theorem 16 (Simple Ito’s formula, Steele 8.1). f € C?(R) and f(B;), then
! ! 1 ! 1
£(B) = 10+ [ BB+ 5 [ (B (47)
(B0 = (BB, + 31" (B)d, (18)

Note the general fact that (dBs)* = ds, (dBs)" = 0 for n > 2.

Theorem 17 (Ito’s formula with time and space, Steele 8.2). f € C*2(R* x R) and f(t, B;), then we have

B taf taf 1 tan
df (t, By) = fz(s, Bs)dBs + fi(s, Bs)ds + %fm(s, By)ds (50)

Theorem 18 (Vector Ito’s formula, Steele 8.3). f € CY?(R*,R?) and B; € R?, then
1

Theorem 19 (Local Martingale, Class 04/05). Let Z; = fg b(w,s)dBs,b € L3 5 and f(Z:). From the
general fact, we have

dZ; = bdB,  (dZ:)? = (bdBy)® = b2dt (52)
then we have
1
df(2)) = ['(Z.)dZs + 5 f"(Z.) (dZ)° (53)
= f'(Z,)bdBs + % f"(Zs)b*ds (54)
Alternatively, we have
t 1 t
120 = 120+ | @+ [ zoptas (5)
0 0
Theorem 20 (Standard Process, Steele 8.4). f € CL2(RT,R) and
t t
X = / a(w, s)ds —|—/ b(w, s)dBs (56)
0 0
then dX, = bdB,, (dX,)* = b2ds, so that
t t 1 t 9
F6.X0 = 10 + [ fils. Xodds+ [ s, XdXet 5 [ fuals X (@) (57)
0 0 0
t t 1 t
= £(0) +/ fi(s, X4)ds +/ fo(s, Xo)d X, + 5/ fou(s, Xs)b?ds (58)
0 0 0
1
df (t, X1) = fi(s, Xs)ds + fr(s, Xs)dXs + ifm(s,Xs)des (59)



Theorem 21 (Quadratic Variation, Class 04/10).
- t t 1t ,
£ 2) = 10,20 + | 1:2) 2007+ | 102), 20+ 5 [ 1o(2), 20 (02)
t t 1 st
:f(oa ZO)+/O fw(<Z>t7Zt)det+/(; ft(<Z>taZt)dt+§/0 fwa:(<Z>t7Zt)b2dt

:f(O,ZO)—i—/O fz(<Z>t,Zt)det+/0 ft(<Z>t,Zt)dt+%/0 fm(<Z>t,Zt)b2dt

df((Z)y, Zt) = [2((Z) ¢, Z0)bd By + [1((Z),, Ze)dt + %fm«Z)t , Zi)b*dt
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